• Àüü
  • ÀüÀÚ/Àü±â
  • Åë½Å
  • ÄÄÇ»ÅÍ
´Ý±â

»çÀÌÆ®¸Ê

Loading..

Please wait....

±¹³» ³í¹®Áö

Ȩ Ȩ > ¿¬±¸¹®Çå > ±¹³» ³í¹®Áö > Çѱ¹Á¤º¸Ã³¸®ÇÐȸ ³í¹®Áö > Á¤º¸Ã³¸®ÇÐȸ ³í¹®Áö ¼ÒÇÁÆ®¿þ¾î ¹× µ¥ÀÌÅÍ °øÇÐ

Á¤º¸Ã³¸®ÇÐȸ ³í¹®Áö ¼ÒÇÁÆ®¿þ¾î ¹× µ¥ÀÌÅÍ °øÇÐ

Current Result Document :

ÇѱÛÁ¦¸ñ(Korean Title) µ¥ÀÌÅÍ ºÒ±ÕÇü°ú ÃøÁ¤ ¿ÀÂ÷¸¦ °í·ÁÇÑ »ýºÐÇؼº ¼¶À¯ ÀÎÀå °­½Åµµ ¿¹Ãø ¸ðµ¨ °³¹ß
¿µ¹®Á¦¸ñ(English Title) The Development of Biodegradable Fiber Tensile Tenacity and Elongation Prediction Model Considering Data Imbalance and Measurement Error
ÀúÀÚ(Author) ÇÑ¿µÁø   Á¶ÀÎÈÖ   Young-Jin Han   In-Whee Joe   ¾çÀ¯Áø   Àå°æ¹è   ±èÇöÁö   ¼Û°æÁÖ   ÀÓ¼¼Áø   ¼­È­Á¤   Yang Yu Jin   Jang Kyung Bae   Kim Hyun Ji   Song Gyung Ju   Lim Se Jin   Seo Hwa Jeong   ¹ÚÁøÈ¿   ±è¼ºÈñ   À±ÁÖ»ó   Park Jin Hyo   Kim Sung-Hee   Youn Joosang   ¹Ú¼¼Âù   ±è´ö¿±   ¼­°­º¹   ÀÌ¿ìÁø   Se-Chan Park   Deok-Yeop Kim   Kang-Bok Seo   Woo-Jin Lee  
¿ø¹®¼ö·Ïó(Citation) VOL 11 NO. 12 PP. 0489 ~ 0498 (2022. 12)
Çѱ۳»¿ë
(Korean Abstract)
ÃÖ±Ù ³ëµ¿ Áý¾àÀûÀÎ ¼º°ÝÀÇ ¼¶À¯ »ê¾÷¿¡¼­´Â ÀΰøÁö´ÉÀ» ÅëÇØ ¼¶À¯ ¹æ»ç °øÁ¤¿¡ µé¾î°¡´Â ºñ¿ëÀ» ÁÙÀÌ°í Ç°ÁúÀ» ÃÖÀûÈ­ÇÏ·Á°í ½Ãµµ ÇÏ°í ÀÖ´Ù. ±×·¯³ª ¼¶À¯ ¹æ»ç °øÁ¤Àº µ¥ÀÌÅÍ ¼öÁý¿¡ ÇÊ¿äÇÑ ºñ¿ëÀÌ Å©°í ü°èÀûÀÎ µ¥ÀÌÅÍ ¼öÁý ¹× ó¸® ½Ã½ºÅÛÀÌ ºÎÁ·ÇÏ¿© ÃàÀûµÈ µ¥ÀÌÅ;çÀÌ Àû´Ù. ¶Ç ¹æ»ç ¸ñÀû¿¡ µû¶ó ƯÁ¤ÇÑ º¯¼ö¿¡¸¸ º¯È­¸¦ ÁØ µ¥ÀÌÅ͸¸À» ¿ì¼±À¸·Î ¼öÁýÇÏ¿© µ¥ÀÌÅÍ ºÒ±ÕÇüÀÌ ¹ß»ýÇϸç, ¹°¼º ÃøÁ¤ ȯ°æÀÇ Â÷ÀÌ·Î ÀÎÇØ µ¿ÀÏ ¹æ»ç Á¶°Ç¿¡¼­ ¼öÁýµÈ »ùÇà °£¿¡µµ ¿ÀÂ÷°¡ Á¸ÀçÇÑ´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ Æ¯¼ºµéÀ» °í·ÁÇÏÁö ¾Ê°í ÀΰøÁö´É ¸ðµ¨¿¡ È°¿ëÇÒ °æ¿ì °úÀûÇÕ°ú ¼º´É ÀúÇÏ µîÀÇ ¹®Á¦°¡ ¹ß»ýÇÒ ¼ö ÀÖ´Ù. µû¶ó¼­ º» ³í¹®¿¡¼­´Â ¹æ»ç °øÁ¤ µ¥ÀÌÅÍ Æ¯¼ºÀ» °í·ÁÇÑ ÀÌ»óÄ¡ ó¸® ±â¹ý°ú µ¥ÀÌÅÍ Áõ°­ ±â¹ýÀ» Á¦¾ÈÇÑ´Ù. ±×¸®°í À̸¦ ±âÁ¸ ÀÌ»óÄ¡ ó¸® ±â¹ý ¹× µ¥ÀÌÅÍ Áõ°­ ±â¹ý°ú ºñ±³ÇÏ¿© Á¦¾ÈÇÑ ±â¹ýÀÌ ¹æ»ç °øÁ¤ µ¥ÀÌÅÍ¿¡ ´õ ÀûÇÕÇÔÀ» º¸ÀδÙ. ¶Ç ¿øº» µ¥ÀÌÅÍ¿Í Á¦¾ÈÇÑ ±â¹ýµé·Î ó¸®µÈ µ¥ÀÌÅ͸¦ ´Ù¾çÇÑ ¸ðµ¨¿¡ Àû¿ëÇÏ¿© ºñ±³ÇÔÀ» ÅëÇØ Á¦¾ÈÇÑ ±â¹ýµéÀ» »ç¿ëÇÑ ¸ðµ¨µéÀÌ ±×·¸Áö ¾ÊÀº ¸ðµ¨µé¿¡ ºñÇØ ÀÎÀå °­½Åµµ ¿¹Ãø ¸ðµ¨ÀÇ ¼º´ÉÀÌ °³¼±µÊÀ» º¸ÀδÙ.
¿µ¹®³»¿ë
(English Abstract)
Recently, the textile industry, which is labor-intensive, is attempting to reduce process costs and optimize quality through artificial intelligence. However, the fiber spinning process has a high cost for data collection and lacks a systematic data collection and processing system, so the amount of accumulated data is small. In addition, data imbalance occurs by preferentially collecting only data with changes in specific variables according to the purpose of fiber spinning, and there is an error even between samples collected under the same fiber spinning conditions due to difference in the measurement environment of physical properties. If these data characteristics are not taken into account and used for AI models, problems such as overfitting and performance degradation may occur. Therefore, in this paper, we propose an outlier handling technique and data augmentation technique considering the characteristics of the spinning process data. And, by comparing it with the existing outlier handling technique and data augmentation technique, it is shown that the proposed technique is more suitable for spinning process data. In addition, by comparing the original data and the data processed with the proposed method to various models, it is shown that the performance of the tensile tenacity and elongation prediction model is improved in the models using the proposed methods compared to the models not using the proposed methods.
Å°¿öµå(Keyword) ±â°èÇнÀ   ½ºÄÉÀϸµ   SMOTE   ¶óÀÌÆ® GBM   ºÒ±ÕÇü ºÐ·ù      Machine Learning   Scaling   SMOTE   Light GBM   Imbalanced Classification   ¾çÀÚ ÄÄÇ»ÅÍ   °æ·® ºí·Ï ¾ÏÈ£   SPARKLE   Grover Search Algorithm   Quantum Computer   Lightweight Block Cipher   SPARKLE   Grover Search Algorithm   ¸ÞŸµ¥ÀÌÅÍ   FAIR¿øÄ¢   µ¥ÀÌÅÍ °ü¸®   Metadata   FAIR Principle   Data Managements   µ¥ÀÌÅÍ ºÒ±ÕÇü   ÀÌ»óÄ¡ 󸮠  µ¥ÀÌÅÍ Áõ°­   ÀÎÀå °­½Åµµ   »ýºÐÇؼº ¼¶À¯(PLA)   Data Imbalance   Outlier Handling   Data Augmentation   Tensile Tenacity and Tensile Elongation   Biodegradable Fiber(PLA)  
ÆÄÀÏ÷ºÎ PDF ´Ù¿î·Îµå