• Àüü
  • ÀüÀÚ/Àü±â
  • Åë½Å
  • ÄÄÇ»ÅÍ
´Ý±â

»çÀÌÆ®¸Ê

Loading..

Please wait....

±¹³» ³í¹®Áö

Ȩ Ȩ > ¿¬±¸¹®Çå > ±¹³» ³í¹®Áö > Çѱ¹Á¤º¸Ã³¸®ÇÐȸ ³í¹®Áö > Á¤º¸Ã³¸®ÇÐȸ ³í¹®Áö ¼ÒÇÁÆ®¿þ¾î ¹× µ¥ÀÌÅÍ °øÇÐ

Á¤º¸Ã³¸®ÇÐȸ ³í¹®Áö ¼ÒÇÁÆ®¿þ¾î ¹× µ¥ÀÌÅÍ °øÇÐ

Current Result Document :

ÇѱÛÁ¦¸ñ(Korean Title) ÀÌÁúÀû À̹ÌÁöÀÇ µö·¯´× ºÐ¼®À» À§ÇÑ Àû´ëÀû ÇнÀ±â¹Ý À̹ÌÁö º¸Á¤ ¹æ¹ý·Ð
¿µ¹®Á¦¸ñ(English Title) Adversarial Learning-Based Image Correction Methodology for Deep Learning Analysis of Heterogeneous Images
ÀúÀÚ(Author) ±èÁØ¿ì   ±è³²±Ô   Junwoo Kim   Namgyu Kim  
¿ø¹®¼ö·Ïó(Citation) VOL 10 NO. 11 PP. 0457 ~ 0464 (2021. 11)
Çѱ۳»¿ë
(Korean Abstract)
ºòµ¥ÀÌÅÍ ½Ã´ëÀÇ µµ·¡´Â µ¥ÀÌÅÍ¿¡¼­ ½º½º·Î ±ÔÄ¢À» ¹è¿ì´Â µö·¯´×ÀÇ ºñ¾àÀûÀÎ ¹ßÀüÀ» °¡´ÉÇÏ°Ô ÇÏ¿´À¸¸ç, ƯÈ÷ CNN ¾Ë°í¸®ÁòÀÌ °ÅµÐ ¼º°ú´Â ¸ðµ¨ÀÇ ±¸Á¶¸¦ ³Ñ¾î ¼Ò½º µ¥ÀÌÅÍ ÀÚü¸¦ Á¶Á¤ÇÏ´Â ¼öÁØ¿¡ À̸£·¶´Ù. ÇÏÁö¸¸ ±âÁ¸ÀÇ À̹ÌÁö ó¸® ¹æ¹ýÀº À̹ÌÁö µ¥ÀÌÅÍ ÀÚü¸¦ ´Ù·ê »Ó, ÇØ´ç À̹ÌÁö°¡ »ý¼ºµÈ ÀÌÁúÀû ȯ°æÀ» ÃæºÐÈ÷ °í·ÁÇÏÁö ¾Ê¾Ò´Ù. ÀÌÁúÀû ȯ°æ¿¡¼­ ÃÔ¿µµÈ À̹ÌÁö´Â µ¿ÀÏÇÑ Á¤º¸ÀÓ¿¡µµ ÃÔ¿µ ȯ°æ¿¡ µû¶ó °¢ À̹ÌÁöÀÇ Æ¯Â¡(Feature)ÀÌ »óÀÌÇÏ°Ô Ç¥ÇöµÉ ¼ö ÀÖ´Ù. ÀÌ´Â °¢ À̹ÌÁö°¡ °®´Â »óÀÌÇÑ È¯°æ Á¤º¸»Ó ¾Æ´Ï¶ó À̹ÌÁö °íÀ¯ÀÇ Á¤º¸Á¶Â÷ ¼­·Î »óÀÌÇÑ Æ¯Â¡À¸·Î Ç¥ÇöµÇ¸ç, ÀÌ·Î ÀÎÇØ À̵é À̹ÌÁö Á¤º¸´Â ¼­·Î ÀâÀ½(Noise)À¸·Î ÀÛ¿ëÇØ ¸ðµ¨ÀÇ ºÐ¼® ¼º´ÉÀ» ÀúÇØÇÒ ¼ö ÀÖÀ½À» ÀǹÌÇÑ´Ù. µû¶ó¼­ º» ³í¹®Àº ÀÌÁúÀû ȯ°æ¿¡¼­ »ý¼ºµÈ À̹ÌÁö µ¥ÀÌÅ͵éÀ» µ¿½Ã¿¡ »ç¿ëÇÏ´Â ¾Øµå-Åõ-¾Øµå(End-To-End) ±¸Á¶ÀÇ Àû´ëÀû ÇнÀ(Adversarial Learning) ±â¹ÝÀÇ À̹ÌÁö »ö Ç×»ó¼º ¸ðµ¨ ¼º´É Çâ»ó ¹æ¾ÈÀ» Á¦¾ÈÇÑ´Ù. ±¸Ã¼ÀûÀ¸·Î Á¦¾È ¹æ¹ý·ÐÀº À̹ÌÁö°¡ ÃÔ¿µµÈ ȯ°æÀÎ µµ¸ÞÀÎÀ» ¿¹ÃøÇÏ´Â ¡®µµ¸ÞÀÎ ºÐ·ù±â¡¯¿Í Á¶¸í °ªÀ» ¿¹ÃøÇÏ´Â ¡®Á¶¸í ¿¹Ãø±â¡¯ÀÇ »óÈ£ ÀÛ¿ëÀ¸·Î µ¿ÀÛÇϸç, µµ¸ÞÀÎ ºÐ·ùÀÇ ¼º´ÉÀ» ¶³¾î¶ß¸®´Â ¹æÇâÀÇ ÇнÀÀ» ÅëÇØ µµ¸ÞÀΠƯ¼ºÀ» Á¦°ÅÇÑ´Ù. Á¦¾È ¹æ¹ý·ÐÀÇ ¼º´ÉÀ» Æò°¡Çϱâ À§ÇØ ÀÌÁúÀû ȯ°æ¿¡¼­ ÃÔ¿µµÈ À̹ÌÁö µ¥ÀÌÅÍ ¼Â 7,022Àå¿¡ ´ëÇÑ »ö Ç×»ó¼º ½ÇÇèÀ» ¼öÇàÇÑ °á°ú, Á¦¾È ¹æ¹ý·ÐÀÌ ±âÁ¸ ¹æ¹ý·Ð¿¡ ºñÇØ Angular Error Ãø¸é¿¡¼­ ¿ì¼öÇÑ ¼º´ÉÀ» ³ªÅ¸³¿À» È®ÀÎÇÏ¿´´Ù.
¿µ¹®³»¿ë
(English Abstract)
The advent of the big data era has enabled the rapid development of deep learning that learns rules by itself from data. In particular, the performance of CNN algorithms has reached the level of self-adjusting the source data itself. However, the existing image processing method only deals with the image data itself, and does not sufficiently consider the heterogeneous environment in which the image is generated. Images generated in a heterogeneous environment may have the same information, but their features may be expressed differently depending on the photographing environment. This means that not only the different environmental information of each image but also the same information are represented by different features, which may degrade the performance of the image analysis model. Therefore, in this paper, we propose a method to improve the performance of the image color constancy model based on Adversarial Learning that uses image data generated in a heterogeneous environment simultaneously. Specifically, the proposed methodology operates with the interaction of the ¡®Domain Discriminator¡¯ that predicts the environment in which the image was taken and the ¡®Illumination Estimator¡¯ that predicts the lighting value. As a result of conducting an experiment on 7,022 images taken in heterogeneous environments to evaluate the performance of the proposed methodology, the proposed methodology showed superior performance in terms of Angular Error compared to the existing methods.
Å°¿öµå(Keyword) Àû´ëÀû ÇнÀ   »ö Ç׻󼺠  ÀÌÁúÀû À̹ÌÁö   Á¶¸í ÃßÁ¤   À̹ÌÁö º¸Á¤   Adversarial Learning   Color Constancy   Heterogeneous Images   Illumination Estimation   Image Correction  
ÆÄÀÏ÷ºÎ PDF ´Ù¿î·Îµå