• Àüü
  • ÀüÀÚ/Àü±â
  • Åë½Å
  • ÄÄÇ»ÅÍ
´Ý±â

»çÀÌÆ®¸Ê

Loading..

Please wait....

±¹³» ³í¹®Áö

Ȩ Ȩ > ¿¬±¸¹®Çå > ±¹³» ³í¹®Áö > Çѱ¹Á¤º¸°úÇÐȸ ³í¹®Áö > Á¤º¸°úÇÐȸ ÄÄÇ»ÆÃÀÇ ½ÇÁ¦ ³í¹®Áö (KIISE Transactions on Computing Practices)

Á¤º¸°úÇÐȸ ÄÄÇ»ÆÃÀÇ ½ÇÁ¦ ³í¹®Áö (KIISE Transactions on Computing Practices)

Current Result Document : 4 / 5 ÀÌÀü°Ç ÀÌÀü°Ç   ´ÙÀ½°Ç ´ÙÀ½°Ç

ÇѱÛÁ¦¸ñ(Korean Title) ÅÛÇø´ Àç»ç¿ëÀ» ÅëÇÑ Æз¯¹ÌÅÍ È¿À²Àû ½Å°æ¸Á ³×Æ®¿öÅ©
¿µ¹®Á¦¸ñ(English Title) Parameter-Efficient Neural Networks Using Template Reuse
ÀúÀÚ(Author) ±è´ë¿¬   °­¿ìö   Daeyeon Kim   Woochul Kang  
¿ø¹®¼ö·Ïó(Citation) VOL 09 NO. 05 PP. 0169 ~ 0176 (2020. 05)
Çѱ۳»¿ë
(Korean Abstract)
ÃÖ±Ù ½ÉÃþ ½Å°æ¸Á (Deep Neural Networks, DNNs)´Â ¸ð¹ÙÀÏ ¹× ÀÓº£µðµå µð¹ÙÀ̽º¿¡ Àΰ£°ú À¯»çÇÑ ¼öÁØÀÇ ÀΰøÁö´ÉÀ» Á¦°øÇØ ¸¹Àº ÀÀ¿ë¿¡¼­ Çõ¸íÀ» °¡Á®¿Ô´Ù. ÇÏÁö¸¸, ÀÌ·¯ÇÑ DNNÀÇ ³ôÀº Ãß·Ð Á¤È®µµ´Â Å« ¿¬»ê·®À» ¿ä±¸Çϸç, µû¶ó¼­ ±âÁ¸ÀÇ »ç¿ëµÇ´ø ¸ðµ¨À» ¾ÐÃàÇϰųª ¸®¼Ò½º°¡ Á¦ÇÑÀûÀÎ µð¹ÙÀ̽º¸¦ À§ÇØ ÀÛÀº DzÇÁ¸°Æ®¸¦ °¡Áø »õ·Î¿î DNN ±¸Á¶¸¦ ¸¸µå´Â ¹æ¹ýÀ¸·Î DNNÀÇ ¿¬»ê ¿À¹öÇìµå¸¦ ÁÙÀ̱â À§ÇÑ ¸¹Àº ³ë·ÂµéÀÌ ÀÖ¾î¿Ô´Ù. À̵é Áß ÃÖ±Ù ÀÛÀº ¸Þ¸ð¸® DzÇÁ¸°Æ®¸¦ °®´Â ¸ðµ¨ ¼³°è¿¡¼­ ÁÖ¸ñ¹Þ´Â ±â¹ýÁß Çϳª´Â ·¹ÀÌ¾î °£¿¡ Æз¯¹ÌÅ͸¦ °øÀ¯ÇÏ´Â °ÍÀÌ´Ù. ÇÏÁö¸¸, ±âÁ¸ÀÇ Æз¯¹ÌÅÍ °øÀ¯ ±â¹ýµéÀº ResNet°ú °°ÀÌ Æз¯¹ÌÅÍ¿¡ Áߺ¹(redundancy)ÀÌ ³ôÀº °ÍÀ¸·Î ¾Ë·ÁÁø ±íÀº ½ÉÃþ ½Å°æ¸Á¿¡ Àû¿ëµÇ¾î¿Ô´Ù. º» ³í¹®Àº ShuffleNetV2¿Í °°ÀÌ ÀÌ¹Ì Æз¯¹ÌÅÍ »ç¿ë¿¡ È¿À²ÀûÀÎ ±¸Á¶¸¦ °®´Â ¼ÒÇü ½Å°æ¸Á¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Â Æз¯¹ÌÅÍ °øÀ¯ ¹æ¹ýÀ» Á¦¾ÈÇÑ´Ù. º» ³í¹®¿¡¼­ Á¦¾ÈÇÏ´Â ¹æ¹ýÀº ÀÛÀº Å©±âÀÇ ÅÛÇø´°ú ·¹À̾ °íÀ¯ÇÑ ÀÛÀº Æз¯¹ÌÅ͸¦ °áÇÕÇÏ¿© °¡ÁßÄ¡¸¦ »ý¼ºÇÑ´Ù. ImageNet°ú CIFAR-100 µ¥ÀÌÅͼ¿¡ ´ëÇÑ ¿ì¸®ÀÇ ½ÇÇè °á°ú´Â ShuffleNetV2ÀÇ Æз¯¹ÌÅ͸¦ 15%-35% °¨¼Ò½ÃÅ°¸é¼­µµ ±âÁ¸ÀÇ Æз¯¹ÌÅÍ °øÀ¯ ¹æ¹ý°ú pruning ¹æ¹ý¿¡ ´ëºñ ÀÛÀº Á¤È®µµ °¨¼Ò¸¸ÀÌ ¹ß»ýÇÑ´Ù. ¶ÇÇÑ ¿ì¸®´Â Á¦¾ÈµÈ ¹æ¹ýÀÌ ÃÖ±ÙÀÇ ÀÓº£µðµå µð¹ÙÀ̽º»ó¿¡¼­ ÀÀ´ä¼Óµµ ¹× ¿¡³ÊÁö ¼Ò¸ð·® Ãø¸é¿¡¼­ È¿À²ÀûÀÓÀ» º¸¿©ÁØ´Ù.
¿µ¹®³»¿ë
(English Abstract)
Recently, deep neural networks (DNNs) have brought revolutions to many mobile and embedded devices by providing human-level machine intelligence for various applications. However, high inference accuracy of such DNNs comes at high computational costs, and, hence, there have been significant efforts to reduce computational overheads of DNNs either by compressing off-the-shelf models or by designing a new small footprint DNN architecture tailored to resource constrained devices. One notable recent paradigm in designing small footprint DNN models is sharing parameters in several layers. However, in previous approaches, the parameter-sharing techniques have been applied to large deep networks, such as ResNet, that are known to have high redundancy. In this paper, we propose a parameter-sharing method for already parameter-efficient small networks such as ShuffleNetV2. In our approach, small templates are combined with small layer-specific parameters to generate weights. Our experiment results on ImageNet and CIFAR100 datasets show that our approach can reduce the size of parameters by 15%-35% of ShuffleNetV2 while achieving smaller drops in accuracies compared to previous parameter-sharing and pruning approaches. We further show that the proposed approach is efficient in terms of latency and energy consumption on modern embedded devices.
Å°¿öµå(Keyword) Neural Network   Parameter Sharing   Layer Reuse   Parameter Efficiency   ½Å°æ¸Á   Æз¯¹ÌÅÍ °øÀ¯   ·¹À̾î Àç»ç¿ë   Æз¯¹ÌÅÍ È¿À²  
ÆÄÀÏ÷ºÎ PDF ´Ù¿î·Îµå