• 전체
  • 전자/전기
  • 통신
  • 컴퓨터
닫기

사이트맵

Loading..

Please wait....

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국인터넷정보학회 논문지

한국인터넷정보학회 논문지

Current Result Document :

한글제목(Korean Title) 오토 인코더 기반의 단일 클래스 이상 탐지 모델을 통한 네트워크 침입 탐지
영문제목(English Title) Network Intrusion Detection with One Class Anomaly Detection Model based on Auto Encoder.
저자(Author) 민병준   유지훈   김상수   신동일   신동규   Byeoungjun Min   Jihoon Yoo   Sangsoo Kim   Dongil Shin   Dongkyoo Shin  
원문수록처(Citation) VOL 22 NO. 01 PP. 0013 ~ 0022 (2021. 02)
한글내용
(Korean Abstract)
최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 지능형 지속 위협(Adavanced Persistent Threat; APT)과 같은 새로운 공격에 대해서 시그니처 패턴은 일반화 성능이 떨어지는 문제가 존재한다. 이러한 문제를 해결하기 위해 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 하지만 실제 네트워크 환경에서 공격 샘플은 정상 샘플에 비해서 매우 적게 수집되어 클래스 불균형(Class Imbalance) 문제를 겪게 된다. 이러한 데이터로 지도 학습 기반의 이상 탐지 모델을 학습시킬 경우 정상 샘플에 편향된 결과를 가지게 된다. 본 논문에서는 이러한 불균형 문제를 해결하기 위해서 오토 인코더(Auto Encoder; AE)를 활용해 One-Class Anomaly Detection 을 수행하여 이를 극복한다. 실험은 NSL-KDD 데이터 셋을 통해 진행되었으며, 제안한 방법의 성능 평가를 위해 지도 학습된 모델들과 성능을 비교한다.
영문내용
(English Abstract)
Recently network based attack technologies are rapidly advanced and intelligent, the limitations of existing signature-based intrusion detection systems are becoming clear. The reason is that signature-based detection methods lack generalization capabilities for new attacks such as APT attacks. To solve these problems, research on machine learning-based intrusion detection systems is being actively conducted. However, in the actual network environment, attack samples are collected very little compared to normal samples, resulting in class imbalance problems. When a supervised learning-based anomaly detection model is trained with such data, the result is biased to the normal sample. In this paper, we propose to overcome this imbalance problem through One-Class Anomaly Detection using an auto encoder. The experiment was conducted through the NSL-KDD data set and compares the performance with the supervised learning models for the performance evaluation of the proposed method.
키워드(Keyword) 이상 탐지   네트워크 침입 탐지   오토인코더   NSL-KDD   Anomaly Detection   Network Intrusion Detection   AutoEncoder   NSL-KDD  
파일첨부 PDF 다운로드