• 전체
  • 전자/전기
  • 통신
  • 컴퓨터
닫기

사이트맵

Loading..

Please wait....

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보과학회 논문지 > 정보과학회논문지 (Journal of KIISE)

정보과학회논문지 (Journal of KIISE)

Current Result Document : 4 / 14 이전건 이전건   다음건 다음건

한글제목(Korean Title) Unbalanced U-Net과 GAN(Generative Adversarial Networks)을 이용한 한국어 폰트 자동 변환
영문제목(English Title) Automatic Transformation of Korean Fonts using Unbalanced U-net and Generative Adversarial Networks
저자(Author) 방가   고승현   방양   조근식   Pangjia   Seunghyun Ko   Yang Fang   Geun-sik Jo                          
원문수록처(Citation) VOL 46 NO. 01 PP. 0015 ~ 0021 (2019. 01)
한글내용
(Korean Abstract)
본 논문에서는 원문 폰트를 특정한 아날로그 폰트 스타일로 변환하는 타이포그래피 변환 문제 에 대해 연구한다. 타이포그래피 변환 문제를 해결하기 위해 이 문제를 이미지와 이미지 번역 문제로 치 환하고 GAN을 기반으로 한 언밸런스 형 u-net 아키텍처를 제안한다. 기존의 밸런스 형 u-net과는 달리 제안하는 아키텍처는 언밸런스 형 u-net을 포함한 두 개의 서브넷으로 구성된다. (1)언밸런스 형 u-net은 의미 및 구조 정보를 유지하면서 특정 글꼴 스타일을 다른 스타일로 변환한다. (2) GAN은 L1 손실, 상수 손실 및 원하는 목표 글꼴을 생성하는 데 도움이 되는 이진 GAN 손실을 포함하는 복합 손실 함수를 사 용한다. 실험결과 제안하는 모델인 언밸런스 형 u-net이 밸런스 형 u-net 보다 cheat loss에서 빠른 수렴 속도와 안정적인 트레이닝 손실을 보였고 generate loss에서 트레이닝 손실을 안정적으로 줄여서 모델 성 능 하락 문제를 해결하였다.
영문내용
(English Abstract)
t In this paper, we study the typography transfer problem: transferring a source font, to an analog font with a specified style. To solve the typography transfer problem, we treat the problem as an image-to-image translation problem, and propose an unbalanced u-net architecture based on Generative Adversarial Network(GAN). Unlike traditional balanced u-net architecture, architecture we proposed consists of two subnets: (1) an unbalanced u-net is responsible for transferring specified fonts style to another, while maintaining semantic and structure information; (2) an adversarial net. Our model uses a compound loss function that includes a L1 loss, a constant loss, and a binary GAN loss to facilitate generating desired target fonts. Experiments demonstrate that our proposed network leads to more stable training loss, with faster convergence speed in cheat loss, and avoids falling into a degradation problem in generating loss than balanced u-net.
키워드(Keyword) 이미지와 이미지 번역   폰트 변환   GAN 손실   복합 손실   image to image translation   typography transfer   GAN loss   compound loss                       
파일첨부 PDF 다운로드