• 전체
  • 전자/전기
  • 통신
  • 컴퓨터
닫기

사이트맵

Loading..

Please wait....

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보처리학회 논문지 > 정보처리학회 논문지 소프트웨어 및 데이터 공학

정보처리학회 논문지 소프트웨어 및 데이터 공학

Current Result Document : 468 / 468

한글제목(Korean Title) 스킵연결이 적용된 오토인코더 모델의 클러스터링 성능 분석
영문제목(English Title) Clustering Performance Analysis of Autoencoder with Skip Connection
저자(Author) 조인수   강윤희   최동빈   박용범   In-su Jo   Yunhee Kang   Dong-bin Choi   Young B. Park  
원문수록처(Citation) VOL 09 NO. 12 PP. 0403 ~ 0410 (2020. 12)
한글내용
(Korean Abstract)
오토인코더의 데이터 복원(Output result) 기능을 이용한 노이즈 제거 및 초해상도와 같은 연구가 진행되는 가운데 오토인코더의 차원 축소 기능을 이용한 클러스터링의 성능 향상에 대한 연구도 활발히 진행되고 있다. 오토인코더를 이용한 클러스터링 기능과 데이터 복원 기능은 모두 동일한 학습을 통해 성능을 향상시킨다는 공통점이 있다. 본 논문은 이런 특징을 토대로, 데이터 복원 성능이 뛰어나도록 설계된 오토인코더 모델이 클러스터링 성능 또한 뛰어난지 알아보기 위한 실험을 진행했다. 데이터 복원 성능이 뛰어난 오토인코더를 설계하기 위해서 스킵연결(Skip connection) 기법을 사용했다. 스킵연결 기법은 기울기 소실(Vanishing gradient)현상을 해소해주고 모델의 학습 효율을 높인다는 장점을 가지고 있을 뿐만 아니라, 데이터 복원 시 손실된 정보를 보완해 줌으로써 데이터 복원 성능을 높이는 효과도 가지고 있다. 스킵연결이 적용된 오토인코더 모델과 적용되지 않은 모델의 데이터 복원 성능과 클러스터링 성능을 그래프와 시각적 추출물을 통해 결과를 비교해 보니, 데이터 복원 성능은 올랐지만 클러스터링 성능은 떨어지는 결과를 확인했다. 이 결과는 오토인코더와 같은 신경망 모델이 출력된 결과 성능이 좋다고 해서 각 레이어들이 데이터의 특징을 모두 잘 학습했다고 확신할 수 없음을 알려준다. 마지막으로 클러스터링의 성능을 좌우하는 잠재변수(latent code)와 스킵연결의 관계를 분석하여 실험 결과의 원인에 대해 파악하였고, 파악한 결과를 통해 잠재변수와 스킵연결의 특징정보를 이용해 클러스터링의 성능저하 현상을 보완할 수 있다는 사실을 보였다. 이 연구는 한자 유니코드 문제를 클러스터링 기법을 이용해 해결하고자 클러스터링 성능 향상을 위한 선행연구이다.
영문내용
(English Abstract)
In addition to the research on noise removal and super-resolution using the data restoration (Output result) function of Autoencoder, research on the performance improvement of clustering using the dimension reduction function of autoencoder are actively being conducted. The clustering function and data restoration function using Autoencoder have common points that both improve performance through the same learning. Based on these characteristics, this study conducted an experiment to see if the autoencoder model designed to have excellent data recovery performance is superior in clustering performance. Skip connection technique was used to design autoencoder with excellent data recovery performance. The output result performance and clustering performance of both autoencoder model with Skip connection and model without Skip connection were shown as graph and visual extract. The output result performance was increased, but the clustering performance was decreased. This result indicates that the neural network models such as autoencoders are not sure that each layer has learned the characteristics of the data well if the output result is good. Lastly, the performance degradation of clustering was compensated by using both latent code and skip connection. This study is a prior study to solve the Hanja Unicode problem by clustering
키워드(Keyword) 스킵연결   오토인코더   클러스터링   초해상도   Skip Connection   Autoencoder   Clustering   Superresolution  
파일첨부 PDF 다운로드